Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1367359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660488

RESUMEN

Cryptosporidium parvum is a common cause of a zoonotic disease and a main cause of diarrhea in newborns. Effective drugs or vaccines are still lacking. Oocyst is the infective form of the parasite; after its ingestion, the oocyst excysts and releases four sporozoites into the host intestine that rapidly attack the enterocytes. The membrane protein CpRom1 is a large rhomboid protease that is expressed by sporozoites and recognized as antigen by the host immune system. In this study, we observed the release of CpRom1 with extracellular vesicles (EVs) that was not previously described. To investigate this phenomenon, we isolated and resolved EVs from the excystation medium by differential ultracentrifugation. Fluorescence flow cytometry and transmission electron microscopy (TEM) experiments identified two types of sporozoite-derived vesicles: large extracellular vesicles (LEVs) and small extracellular vesicles (SEVs). Nanoparticle tracking analysis (NTA) revealed mode diameter of 181 nm for LEVs and 105 nm for SEVs, respectively. Immunodetection experiments proved the presence of CpRom1 and the Golgi protein CpGRASP in LEVs, while immune-electron microscopy trials demonstrated the localization of CpRom1 on the LEVs surface. TEM and scanning electron microscopy (SEM) showed that LEVs were generated by means of the budding of the outer membrane of sporozoites; conversely, the origin of SEVs remained uncertain. Distinct protein compositions were observed between LEVs and SEVs as evidenced by their corresponding electrophoretic profiles. Indeed, a dedicated proteomic analysis identified 5 and 16 proteins unique for LEVs and SEVs, respectively. Overall, 60 proteins were identified in the proteome of both types of vesicles and most of these proteins (48 in number) were already identified in the molecular cargo of extracellular vesicles from other organisms. Noteworthy, we identified 12 proteins unique to Cryptosporidium spp. and this last group included the immunodominant parasite antigen glycoprotein GP60, which is one of the most abundant proteins in both LEVs and SEVs.


Asunto(s)
Cryptosporidium parvum , Vesículas Extracelulares , Proteínas Protozoarias , Esporozoítos , Vesículas Extracelulares/metabolismo , Cryptosporidium parvum/metabolismo , Esporozoítos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/análisis , Microscopía Electrónica de Transmisión , Animales , Criptosporidiosis/parasitología , Humanos , Proteoma/análisis , Proteómica , Citometría de Flujo
2.
Parasit Vectors ; 17(1): 146, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504274

RESUMEN

BACKGROUND: Cryptosporidium parvum is an apicomplexan zoonotic parasite causing the diarrheal illness cryptosporidiosis in humans and animals. To invade the host intestinal epithelial cells, parasitic proteins expressed on the surface of sporozoites interact with host cells to facilitate the formation of parasitophorous vacuole for the parasite to reside and develop. The gp40 of C. parvum, named Cpgp40 and located on the surface of sporozoites, was proven to participate in the process of host cell invasion. METHODS: We utilized the purified Cpgp40 as a bait to obtain host cell proteins interacting with Cpgp40 through the glutathione S-transferase (GST) pull-down method. In vitro analysis, through bimolecular fluorescence complementation assay (BiFC) and coimmunoprecipitation (Co-IP), confirmed the solid interaction between Cpgp40 and ENO1. In addition, by using protein mutation and parasite infection rate analysis, it was demonstrated that ENO1 plays an important role in the C. parvum invasion of HCT-8 cells. RESULTS: To illustrate the functional activity of Cpgp40 interacting with host cells, we identified the alpha-enolase protein (ENO1) from HCT-8 cells, which showed direct interaction with Cpgp40. The mRNA level of ENO1 gene was significantly decreased at 3 and 24 h after C. parvum infection. Antibodies and siRNA specific to ENO1 showed the ability to neutralize C. parvum infection in vitro, which indicated the participation of ENO1 during the parasite invasion of HCT-8 cells. In addition, we further demonstrated that ENO1 protein was involved in the regulation of cytoplasmic matrix of HCT-8 cells during C. parvum invasion. Functional study of the protein mutation illustrated that ENO1 was also required for the endogenous development of C. parvum. CONCLUSIONS: In this study, we utilized the purified Cpgp40 as a bait to obtain host cell proteins ENO1 interacting with Cpgp40. Functional studies illustrated that the host cell protein ENO1 was involved in the regulation of tight junction and adherent junction proteins during C. parvum invasion and was required for endogenous development of C. parvum.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humanos , Animales , Cryptosporidium parvum/genética , Criptosporidiosis/parasitología , Esporozoítos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de la Membrana/metabolismo , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Biomarcadores de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo
3.
Mol Microbiol ; 121(3): 565-577, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38396332

RESUMEN

Plasmodium sporozoites are the highly motile and invasive forms of the malaria parasite transmitted by mosquitoes. Sporozoites form within oocysts at the midgut wall of the mosquito, egress from oocysts and enter salivary glands prior to transmission. The GPI-anchored major surface protein, the circumsporozoite protein (CSP) is important for Plasmodium sporozoite formation, egress, migration and invasion. To visualize CSP, we previously generated full-length versions of CSP internally tagged with the green fluorescent protein, GFP. However, while these allowed for imaging of sporogony in oocysts, sporozoites failed to egress. Here, we explore different strategies to overcome this block in egress and obtain salivary gland resident sporozoites that express CSP-GFP. Replacing the N-terminal and repeat region with GFP did not allow sporozoite formation. Lowering expression of CSP-GFP at the endogenous locus allowed sporozoite formation but did not overcome egress block. Crossing of CSP-GFP expressing parasites that are blocked in egress with wild-type parasites yielded a small fraction of parasites that entered salivary glands and expressed various levels of CSP-GFP. Expressing CSP-GFP constructs from a silent chromosome region from promoters that are active only post salivary gland invasion yielded normal numbers of fluorescent salivary gland sporozoites, albeit with low levels of fluorescence. We also show that lowering CSP expression by 50% allowed egress from oocysts but not salivary gland entry. In conclusion, Plasmodium berghei parasites with normal CSP expression tolerate a certain level of CSP-GFP without disruption of oocyst egress and salivary gland invasion.


Asunto(s)
Anopheles , Esporozoítos , Animales , Esporozoítos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Anopheles/parasitología , Oocistos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo
4.
PLoS Pathog ; 20(2): e1012008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38354186

RESUMEN

Leucine-rich repeat (LRR) proteins are commonly involved in innate immunity of animals and plants, including for pattern recognition of pathogen-derived elicitors. The Anopheles secreted LRR proteins APL1C and LRIM1 are required for malaria ookinete killing in conjunction with the complement-like TEP1 protein. However, the mechanism of parasite immune recognition by the mosquito remains unclear, although it is known that TEP1 lacks inherent binding specificity. Here, we find that APL1C and LRIM1 bind specifically to Plasmodium berghei ookinetes, even after depletion of TEP1 transcript and protein, consistent with a role for the LRR proteins in pathogen recognition. Moreover, APL1C does not bind to ookinetes of the human malaria parasite Plasmodium falciparum, and is not required for killing of this parasite, which correlates LRR binding specificity and immune protection. Most of the live P. berghei ookinetes that migrated into the extracellular space exposed to mosquito hemolymph, and almost all dead ookinetes, are bound by APL1C, thus associating LRR protein binding with parasite killing. We also find that APL1C binds to the surface of P. berghei sporozoites released from oocysts into the mosquito hemocoel and forms a potent barrier limiting salivary gland invasion and mosquito infectivity. Pathogen binding by APL1C provides the first functional explanation for the long-known requirement of APL1C for P. berghei ookinete killing in the mosquito midgut. We propose that secreted mosquito LRR proteins are required for pathogen discrimination and orientation of immune effector activity, potentially as functional counterparts of the immunoglobulin-based receptors used by vertebrates for antigen recognition.


Asunto(s)
Anopheles , Malaria , Animales , Humanos , Proteínas Repetidas Ricas en Leucina , Anopheles/parasitología , Esporozoítos/metabolismo , Proteínas/metabolismo , Plasmodium berghei/metabolismo
5.
Mol Cell Proteomics ; 23(3): 100736, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342407

RESUMEN

The oocyst is a sporogonic stage of Plasmodium development that takes place in the mosquito midgut in about 2 weeks. The cyst is protected by a capsule of unknown composition, and little is known about oocyst biology. We carried out a proteomic analysis of oocyst samples isolated at early, mid, and late time points of development. Four biological replicates for each time point were analyzed, and almost 600 oocyst-specific candidates were identified. The analysis revealed that, in young oocysts, there is a strong activity of protein and DNA synthesis, whereas in mature oocysts, proteins involved in oocyst and sporozoite development, gliding motility, and invasion are mostly abundant. Among the proteins identified at early stages, 17 candidates are specific to young oocysts. Thirty-four candidates are common to oocyst and the merosome stages (sporozoite proteins excluded), sharing common features as replication and egress. Western blot and immunofluorescence analyses of selected candidates confirm the expression profile obtained by proteomic analysis.


Asunto(s)
Anopheles , Plasmodium , Animales , Oocistos/metabolismo , Proteómica , Esporozoítos/metabolismo , Proteínas Protozoarias/metabolismo
6.
Sci Rep ; 14(1): 4851, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418588

RESUMEN

Eimeria species serve as promising eukaryotic vaccine vectors. And that the location of heterologous antigens in the subcellular components of genetically modified Eimeria may determine the magnitude and type of immune responses. Therefore, our study aimed to target a heterologous fluorescent protein to the cell surface or microneme, two locations where are more effective in inducing protective immunity, of Eimeria tenella and E. acervulina sporozoites. We used an enhanced yellow fluorescent protein (EYFP) as a tagging biomarker, fusing variously with some localization or whole sequences of compartmental proteins for targeting. After acquiring stable transgenic Eimeria populations, we observed EYFP expressing in expected locations with certain strategies. That is, EYFP successfully localized to the surface when it was fused between signal peptides and mature products of surface antigen 1 (SAG1). Furthermore, EYFP was efficiently targeted to the apical end, an optimal location for secretory organelle known as the microneme, when fused to the C terminus of microneme protein 2. Unexpectedly, EYFP exhibited dominantly in the apical end with only weak expression on the surface of the transgenic sporozoites when the parasites were transfected with plasmid with EYFP fused between signal peptides and mature products of E. tenella SAG 13. These strategies worked in both E. tenella and E. acervulina, laying a solid foundation for studying E. tenella and E. acervulina-based live vaccines that can be further tailored to the inclusion of cargo immunogens from other pathogens.


Asunto(s)
Coccidiosis , Eimeria , Parásitos , Enfermedades de las Aves de Corral , Animales , Coccidiosis/parasitología , Animales Modificados Genéticamente , Señales de Clasificación de Proteína , Esporozoítos/metabolismo , Pollos/parasitología
7.
Mol Microbiol ; 121(5): 940-953, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38419272

RESUMEN

Plasmodium is an obligate intracellular parasite that requires intense lipid synthesis for membrane biogenesis and survival. One of the principal membrane components is oleic acid, which is needed to maintain the membrane's biophysical properties and fluidity. The malaria parasite can modify fatty acids, and stearoyl-CoA Δ9-desaturase (Scd) is an enzyme that catalyzes the synthesis of oleic acid by desaturation of stearic acid. Scd is dispensable in P. falciparum blood stages; however, its role in mosquito and liver stages remains unknown. We show that P. berghei Scd localizes to the ER in the blood and liver stages. Disruption of Scd in the rodent malaria parasite P. berghei did not affect parasite blood stage propagation, mosquito stage development, or early liver-stage development. However, when Scd KO sporozoites were inoculated intravenously or by mosquito bite into mice, they failed to initiate blood-stage infection. Immunofluorescence analysis revealed that organelle biogenesis was impaired and merozoite formation was abolished, which initiates blood-stage infections. Genetic complementation of the KO parasites restored merozoite formation to a level similar to that of WT parasites. Mice immunized with Scd KO sporozoites confer long-lasting sterile protection against infectious sporozoite challenge. Thus, the Scd KO parasite is an appealing candidate for inducing protective pre-erythrocytic immunity and hence its utility as a GAP.


Asunto(s)
Hígado , Malaria , Merozoítos , Biogénesis de Organelos , Plasmodium berghei , Esporozoítos , Estearoil-CoA Desaturasa , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/metabolismo , Plasmodium berghei/enzimología , Animales , Ratones , Hígado/parasitología , Merozoítos/crecimiento & desarrollo , Merozoítos/metabolismo , Malaria/parasitología , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Esporozoítos/crecimiento & desarrollo , Esporozoítos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Anopheles/parasitología , Femenino , Retículo Endoplásmico/metabolismo
8.
Genomics ; 116(2): 110792, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38215860

RESUMEN

Eimeria tenella is the main pathogen responsible for coccidiosis in chickens. The life cycle of E. tenella is, arguably, the least complex of all Coccidia, with only one host. However, it presents different developmental stages, either in the environment or in the host and either intracellular or extracellular. Its signaling and metabolic pathways change with its different developmental stages. Until now, little is known about the developmental regulation and transformation mechanisms of its life cycle. In this study, protein profiles from the five developmental stages, including unsporulated oocysts (USO), partially sporulated (7 h) oocysts (SO7h), sporulated oocysts (SO), sporozoites (S) and second-generation merozoites (M2), were harvested using the label-free quantitative proteomics approach. Then the differentially expressed proteins (DEPs) for these stages were identified. A total of 314, 432, 689, and 665 DEPs were identified from the comparison of SO7h vs USO, SO vs SO7h, S vs SO, and M2 vs S, respectively. By conducting weighted gene coexpression network analysis (WGCNA), six modules were dissected. Proteins in blue and brown modules were calculated to be significantly positively correlated with the E. tenella developmental stages of sporozoites (S) and second-generation merozoites (M2), respectively. In addition, hub proteins with high intra-module degree were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway enrichment analyses revealed that hub proteins in blue modules were involved in electron transport chain and oxidative phosphorylation. Hub proteins in the brown module were involved in RNA splicing. These findings provide new clues and ideas to enhance our fundamental understanding of the molecular mechanisms underlying parasite development.


Asunto(s)
Eimeria tenella , Animales , Eimeria tenella/genética , Proteómica , Pollos/parasitología , Oocistos/fisiología , Esporozoítos/genética , Esporozoítos/metabolismo , Estadios del Ciclo de Vida
9.
mBio ; 15(2): e0315823, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38265238

RESUMEN

The zoonotic Cryptosporidium parvum is a global contributor to infantile diarrheal diseases and opportunistic infections in immunocompromised or weakened individuals. Like other apicomplexans, it possesses several specialized secretory organelles, including micronemes, rhoptry, and dense granules. However, the understanding of cryptosporidial micronemal composition and secretory pathway remains limited. Here, we report a new micronemal protein in C. parvum, namely, thrombospondin (TSP)-repeat domain-containing protein-4 (CpTSP4), providing insights into these ambiguities. Immunostaining and enzyme-linked assays show that CpTSP4 is prestored in the micronemes of unexcysted sporozoites but secreted during sporozoite excystation, gliding, and invasion. In excysted sporozoites, CpTSP4 is also distributed on the two central microtubules unique to Cryptosporidium. The secretion and microtubular distribution could be completely blocked by the selective kinesin-5 inhibitors SB-743921 and SB-715992, resulting in the accumulation of CpTSP4 in micronemes. These support the kinesin-dependent microtubular trafficking of CpTSP4 for secretion. We also localize γ-tubulin, consistent with kinesin-dependent anterograde trafficking. Additionally, recombinant CpTSP4 displays nanomolar binding affinity to the host cell surface, for which heparin acts as one of the host ligands. A novel heparin-binding motif is identified and validated biochemically for its contribution to the adhesive property of CpTSP4 by peptide competition assays and site-directed mutagenesis. These findings shed light on the mechanisms of intracellular trafficking and secretion of a cryptosporidial micronemal protein and the interaction of a TSP-family protein with host cells.IMPORTANCECryptosporidium parvum is a globally distributed apicomplexan parasite infecting humans and/or animals. Like other apicomplexans, it possesses specialized secretory organelles in the zoites, in which micronemes discharge molecules to facilitate the movement and invasion of zoites. Although past and recent studies have identified several proteins in cryptosporidial micronemes, our understanding of the composition, secretory pathways, and domain-ligand interactions of micronemal proteins remains limited. This study identifies a new micronemal protein, namely, CpTSP4, that is discharged during excystation, gliding, and invasion of C. parvum sporozoites. The CpTSP4 secretion depends on the intracellular trafficking on the two Cryptosporidium-unique microtubes that could be blocked by kinesin-5/Eg5 inhibitors. Additionally, a novel heparin-binding motif is identified and biochemically validated, which contributes to the nanomolar binding affinity of CpTSP4 to host cells. These findings indicate that kinesin-dependent microtubular trafficking is critical to CpTSP4 secretion, and heparin/heparan sulfate is one of the ligands for this micronemal protein.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humanos , Animales , Cryptosporidium parvum/metabolismo , Criptosporidiosis/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Esporozoítos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Heparina/metabolismo
10.
Sci Rep ; 14(1): 1260, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218737

RESUMEN

In Plasmodium vivax, the most studied vaccine antigens are aimed at blocking merozoite invasion of erythrocytes and disease development. Very few studies have evaluated pre-erythrocytic (PE) stage antigens. The P. vivax circumsporozoite protein (CSP), is considered the leading PE vaccine candidate, but immunity to CSP is short-lived and variant specific. Thus, there is a need to identify other potential candidates to partner with CSP in a multivalent vaccine to protect against infection and disease. We hypothesize that sporozoite antigens important for host cell infection are considered potential targets. In this study, we evaluated the magnitude and quality of naturally acquired antibody responses to four P. vivax PE antigens: sporozoite surface protein 3 (SSP3), sporozoite protein essential for traversal 1 (SPECT1), cell traversal protein of ookinetes and sporozoites (CelTOS) and CSP in plasma of P. vivax infected patients from Thailand. Naturally acquired antibodies to these antigens were prevalent in the study subjects, but with significant differences in magnitude of IgG antibody responses. About 80% of study participants had antibodies to all four antigens and only 2% did not have antibodies to any of the antigens. Most importantly, these antibodies inhibited sporozoite infection of hepatocytes in vitro. Significant variations in magnitude of antigen-specific inhibitory antibody responses were observed with individual samples. The highest inhibitory responses were observed with anti-CelTOS antibodies, followed by anti-SPECT1, SSP3 and CSP antibodies respectively. These data highlight the vaccine potential of these antigens in protecting against hepatocyte infection and the need for a multi-valent pre-erythrocytic vaccine to prevent liver stage development of P. vivax sporozoites.


Asunto(s)
Malaria Vivax , Vacunas , Animales , Humanos , Plasmodium vivax , Esporozoítos/metabolismo , Proteínas Protozoarias/metabolismo , Antígenos de Protozoos , Proteínas de la Membrana/metabolismo , Eritrocitos/metabolismo , Hepatocitos/metabolismo , Anticuerpos Antiprotozoarios , Plasmodium falciparum/metabolismo
11.
Microb Pathog ; 188: 106549, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281605

RESUMEN

The five epidermal growth factor-like domains (EGF) of Eimeria tenella microneme protein 8 (EtMIC8) (EtMIC8-EGF) plays a vital role in host cell attachment and invasion. These processes require interactions between parasite proteins and receptors on the surface of host cells. In this study, five chicken membrane proteins potentially interacting with EtMIC8-EGF were identified using the GST pull-down assay and mass spectrometry analysis, and only chicken (Gallus gallus) epithelial cell adhesion molecule (EPCAM) could bind to EtMIC8-EGF. EPCAM-specific antibody and recombinant EPCAM protein (rEPCAM) inhibited the EtMIC8-EGF binding to host cells in a concentration-dependent manner. Furthermore, the rEPCAM protein showed a binding activity to sporozoites in vitro, and a significant reduction of E. tenella invasion in DF-1 cells was further observed after pre-incubation of sporozoites with rEPCAM. The specific anti-EPCAM antibody further significantly decreased weight loss, lesion score and oocyst output during E. tenella infection, displaying partial inhibition of E. tenella infection. These results indicate that chicken EPCAM is an important EtMIC8-interacting host protein involved in E. tenella-host cell adhesion and invasion. The findings will contribute to a better understanding of the role of adhesion-associated microneme proteins in E. tenella.


Asunto(s)
Coccidiosis , Eimeria tenella , Enfermedades de las Aves de Corral , Animales , Eimeria tenella/química , Eimeria tenella/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Pollos , Proteínas Protozoarias , Factor de Crecimiento Epidérmico/metabolismo , Proteínas Recombinantes , Esporozoítos/metabolismo , Coccidiosis/veterinaria , Coccidiosis/parasitología , Enfermedades de las Aves de Corral/parasitología
12.
Mol Microbiol ; 121(3): 394-412, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37314965

RESUMEN

Plasmodium parasites, the eukaryotic pathogens that cause malaria, feature three distinct invasive forms tailored to the host environment they must navigate and invade for life cycle progression. One conserved feature of these invasive forms is the micronemes, apically oriented secretory organelles involved in egress, motility, adhesion, and invasion. Here we investigate the role of GPI-anchored micronemal antigen (GAMA), which shows a micronemal localization in all zoite forms of the rodent-infecting species Plasmodium berghei. ∆GAMA parasites are severely defective for invasion of the mosquito midgut. Once formed, oocysts develop normally, however, sporozoites are unable to egress and exhibit defective motility. Epitope-tagging of GAMA revealed tight temporal expression late during sporogony and showed that GAMA is shed during sporozoite gliding motility in a similar manner to circumsporozoite protein. Complementation of P. berghei knockout parasites with full-length P. falciparum GAMA partially restored infectivity to mosquitoes, indicating conservation of function across Plasmodium species. A suite of parasites with GAMA expressed under the promoters of CTRP, CAP380, and TRAP, further confirmed the involvement of GAMA in midgut infection, motility, and vertebrate infection. These data show GAMA's involvement in sporozoite motility, egress, and invasion, implicating GAMA as a regulator of microneme function.


Asunto(s)
Culicidae , Parásitos , Animales , Culicidae/metabolismo , Culicidae/parasitología , Parásitos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Oocistos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Esporozoítos/metabolismo
13.
Front Cell Infect Microbiol ; 13: 1305727, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116134

RESUMEN

Introduction: Apicomplexan AP2 family of proteins (ApiAP2) are transcription factors (TFs) that regulate parasite growth and development, but little is known about the ApiAP2 TFs in Eimeria spp. ENH_00027130 sequence is predicted to encode a Eimeria necatrix ApiAP2 protein (EnApiAP2). Methods: The cDNAs encoding full-length and truncated EnApiAP2 protein were cloned and sequenced, respectively. Then, the two cDNAs were cloned into the pET28a(+) expression vector and expressed expressed in Escherichia coli BL21. The mouse polyclonal antibody (pAb) and monoclonal antibody (mAb) against recombinant EnApiAP2 (rEnApiAP2) and EnApiAP2tr (rEnApiAP2tr) were prepared and used to localize the native EnApiAP2 protein in E. necatrix, respectively. Finally, the recombinant pEGFP-C1-ΔNLS-EnApiAP2s (knockout of a nuclear localization sequence, NLS) and pEGFP-C1-EnApiAP2 plasmid were constructed and transfected into DF-1 cells, respectively, to further observe subcellular localization of EnApiAP2 protein. Results: The EnApiAP2 gene had a size of 5019 bp and encoded 1672 amino acids, containing a conserved AP2 domain with a secondary structure consisting of an α-helix and three antiparallel ß-strands. The rEnApiAP2 and rEnApiAP2tr were predominantly expressed in the form of inclusion bodies, and could be recognized by the 6×His tag mAb and the serum of convalescent chickens after infection with E. necatrix, respectively. The native EnApiAP2 protein was detected in sporozoites (SZ) and second generation merozoites (MZ-2) extracts, with a size of approximately 210 kDa. A quantitative real-time PCR (qPCR) analysis showed that the transcription level of EnApiAP2 was significantly higher in SZ than in MZ-2, third generation merozoites (MZ-3) and gametocytes (P<0.01). EnApiAP2 protein was localized in the nuclei of SZ, MZ-2 and MZ-3 of E. necatrix. The protein of EnApiAP2 was localized in the nucleus of the DF-1 cells, whereas the ΔNLS-EnApiAP2 was expressed in the cytoplasm, which further confirmed that EnApiAP2 is nucleoprotein. Discussion: EnApiAP2 protein encoded by ENH_00027130 sequence was localized in the nucleus of E. necatrix parasites, and relied on the NLS for migration to DF-1 cell nucleus. The function of EnApiAP2 need further study.


Asunto(s)
Eimeria , Enfermedades de las Aves de Corral , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Pollos/genética , ADN Complementario/genética , Eimeria/genética , Eimeria/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Enfermedades de las Aves de Corral/parasitología , Esporozoítos/metabolismo
14.
Sci Rep ; 13(1): 22222, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097730

RESUMEN

Plasmodium oocysts develop on the abluminal side of the mosquito midgut in relatively small numbers. Oocysts possess an extracellular cell wall-the capsule-to protect them from the insect's haemolymph environment. To further maximise transmission, each oocyst generates hundreds of sporozoites through an asexual multiplication step called sporogony. Completion of transmission requires sporozoite egress from the capsule (excystation), but this process remains poorly understood. In this study, we fused the parasite-encoded capsule protein Cap380 with green fluorescent protein in a transgenic P. berghei line, allowing live fluorescence imaging of capsules throughout sporogony and sporozoite excystation. The results show that capsules progressively weaken during sporulation ultimately resulting in sporozoite exit through small holes. Prior to formation of the holes, local thinning of the capsule was observed. Our findings support an excystation model based on local, rather than global, weakening of the capsule likely facilitated by local re-orientation of sporozoites and apical secretion.


Asunto(s)
Culicidae , Plasmodium , Animales , Oocistos/metabolismo , Esporozoítos/metabolismo , Plasmodium/metabolismo , Animales Modificados Genéticamente/metabolismo , Culicidae/metabolismo , Proteínas Protozoarias/metabolismo , Plasmodium berghei/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(44): e2304339120, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37883438

RESUMEN

Malaria remains a devastating disease and, with current measures failing to control its transmission, there is a need for novel interventions. A family of proteins that have long been pursued as potential intervention targets are aquaporins, which are channels facilitating the movement of water and other solutes across membranes. We identify an aquaporin in malaria parasites and demonstrate that it is important for completion of Plasmodium development in the mosquito vector. Disruption of AQP2 in the human parasite Plasmodium falciparum and the rodent parasite Plasmodium berghei blocks sporozoite production inside oocysts established on mosquito midguts, greatly limiting parasite infection of salivary glands and transmission to a new host. In vivo epitope tagging of AQP2 in P. berghei, combined with immunofluorescence assays, reveals that the protein is localized in vesicle-like organelles found in the cytoplasm of gametocytes, ookinetes, and sporozoites. The number of these organelles varies between individual parasites and lifecycle stages suggesting that they are likely part of a dynamic endomembrane system. Phylogenetic analysis confirms that AQP2 is unique to malaria and closely related parasites and most closely resembles intracellular aquaporins. Structure prediction analyses identify several unusual features, including a large accessory extracellular loop and an arginine-to-phenylalanine substitution in the selectivity filter principally determining pore function, a unique feature among known aquaporins. This in conjunction with the importance of AQP2 for malaria transmission suggests that AQP2 may be a fruitful target of antimalarial interventions.


Asunto(s)
Acuaporina 2 , Mosquitos Vectores , Proteínas Protozoarias , Animales , Malaria , Mosquitos Vectores/parasitología , Filogenia , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo
16.
Trends Parasitol ; 39(12): 991-995, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37865610

RESUMEN

Plasmodium ookinetes and sporozoites were discovered 125 years ago by MacCallum (J. Exp. Med. 1898;3:117-136) and Ross (Ind. Med. Gaz. 1899;34:1-3), respectively. While the migration capacity of ookinetes was noted immediately, the movements of sporozoites remained enigmatic for decades. Today, we know many proteins involved in parasite migration and start to conceptualize a mechanistic understanding of motility.


Asunto(s)
Plasmodium , Carrera , Animales , Esporozoítos/metabolismo , Plasmodium/metabolismo , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo
17.
J Proteome Res ; 22(9): 2785-2802, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562054

RESUMEN

Proteome-wide lysine acetylation has been documented in apicomplexan parasite Toxoplasma gondii and Plasmodium falciparum. Here, we conducted the first lysine acetylome in unsporulated oocysts (USO), sporulated 7 h oocysts (SO 7h), sporulated oocysts (SO), sporozoites (S), and the second generation merozoites (SMG) of Eimeria tenella through a 4D label-free quantitative technique. Altogether, 8532 lysine acetylation sites on 2325 proteins were identified in E. tenella, among which 5445 sites on 1493 proteins were quantified. In addition, 557, 339, 478, 248, 241, and 424 differentially expressed proteins were identified in the comparisons SO7h vs USO, SO vs SO7h, SO vs USO, S vs SO, SMG vs S, and USO vs SMG, respectively. The bioinformatics analysis of the acetylome showed that the lysine acetylation is widespread on proteins of diverse functions. Moreover, the dynamic changes of lysine acetylome among E. tenella different life stages revealed significant regulation during the whole process of E. tenella growth and stage conversion. This study provides a beginning for the investigation of the regulate role of lysine acetylation in E. tenella and may provide new strategies for anticoccidiosis drug and vaccine development. Raw data are publicly available at iProX with the data set identifier PXD040368.


Asunto(s)
Eimeria tenella , Animales , Acetilación , Eimeria tenella/genética , Eimeria tenella/metabolismo , Lisina/metabolismo , Oocistos/metabolismo , Esporozoítos/metabolismo
18.
Eur J Protistol ; 90: 126012, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37557059

RESUMEN

Coccidiosis, a serious intestinal parasitic disease caused by Eimeria spp., can result in huge annual economic losses to the poultry industry worldwide. At present, coccidiosis is mainly controlled by anticoccidial drugs. However, drug resistance has developed in Eimeria because of the long-term and unreasonable use of the drugs currently available. In our previous study, RNA-seq showed that the expression of methionine aminopeptidase1 (EtMetAP1) was up-regulated in diclazuril-resistant (DZR) and maduramicin-resistant (MRR) strains compared to drug-sensitive (DS) strain of Eimeria tenella. In this study, EtMetAP1 was cloned and expressed, and the function and characteristics of the EtMetAP1 protein were analyzed. The transcription and translation levels of EtMetAP1 in DS strain of E. tenella at different developmental stages were analyzed by qPCR and western blotting. We found that the transcription and translation levels of EtMetAP1 in second-generation merozoites (SM) were higher than those of the other three stages (unsporulated oocyst, sporulated oocyst, and sporozoites). Simultaneously, qPCR was used to analyze the mRNA transcription levels of EtMetAP1 in DS, DZR, MRR, and salinomycin-resistant (SMR) strain. The results showed that compared to the sensitive strain, the transcription levels of EtMetAP1 in DZR and MRR were up-regulated. There was no significant difference in transcription level in SMR. Indirect immunofluorescence localization showed that the protein was mainly localised in the cell membrane and cytoplasm of sporozoites and SM. An invasion inhibition test showed that anti-rEtMetAP1 polyclonal antibody could effectively inhibit the sporozoite invasion of host cells. These results suggest that the protein may be involved in the growth and development of parasites in host cells, the generation of drug resistance, and host cell invasion.


Asunto(s)
Coccidiosis , Eimeria tenella , Eimeria , Animales , Eimeria tenella/genética , Metionina/metabolismo , Metionina/farmacología , Coccidiosis/veterinaria , Coccidiosis/parasitología , Esporozoítos/metabolismo , Oocistos
19.
EMBO Rep ; 24(7): e57064, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37306042

RESUMEN

Eukaryotic cell adhesion and migration rely on surface adhesins connecting extracellular ligands to the intracellular actin cytoskeleton. Plasmodium sporozoites are transmitted by mosquitoes and rely on adhesion and gliding motility to colonize the salivary glands and to reach the liver after transmission. During gliding, the essential sporozoite adhesin TRAP engages actin filaments in the cytoplasm of the parasite, while binding ligands on the substrate through its inserted (I) domain. Crystal structures of TRAP from different Plasmodium species reveal the I domain in closed and open conformations. Here, we probe the importance of these two conformational states by generating parasites expressing versions of TRAP with the I domain stabilized in either the open or closed state with disulfide bonds. Strikingly, both mutations impact sporozoite gliding, mosquito salivary gland entry, and transmission. Absence of gliding in sporozoites expressing the open TRAP I domain can be partially rescued by adding a reducing agent. This suggests that dynamic conformational change is required for ligand binding, gliding motility, and organ invasion and hence sporozoite transmission from mosquito to mammal.


Asunto(s)
Culicidae , Plasmodium , Animales , Esporozoítos/metabolismo , Ligandos , Plasmodium/metabolismo , Hígado/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Mamíferos/metabolismo
20.
Microbiol Spectr ; 11(3): e0449322, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37191558

RESUMEN

Plasmodium parasites are the etiological agents of malaria, a disease responsible for over half a million deaths annually. Successful completion of the parasite's life cycle in the vertebrate host and transmission to a mosquito vector is contingent upon the ability of the parasite to evade the host's defenses. The extracellular stages of the parasite, including gametes and sporozoites, must evade complement attack in both the mammalian host and in the blood ingested by the mosquito vector. Here, we show that Plasmodium falciparum gametes and sporozoites acquire mammalian plasminogen and activate it into the serine protease plasmin to evade complement attack by degrading C3b. Complement-mediated permeabilization of gametes and sporozoites was higher in plasminogen-depleted plasma, suggesting that plasminogen is important for complement evasion. Plasmin also facilitates gamete exflagellation through complement evasion. Furthermore, supplementing serum with plasmin significantly increased parasite infectivity to mosquitoes and lowered the transmission-blocking activity of antibodies to Pfs230, a potent vaccine candidate currently in clinical trials. Finally, we show that human factor H, previously shown to facilitate complement evasion by gametes, also facilitates complement evasion by sporozoites. Plasmin and factor H simultaneously cooperate to enhance complement evasion by gametes and sporozoites. Taken together, our data show that Plasmodium falciparum gametes and sporozoites hijack the mammalian serine protease plasmin to evade complement attack by degrading C3b. Understanding of the mechanisms of complement evasion by the parasite is key to the development of novel effective therapeutics. IMPORTANCE Current approaches to control malaria are complicated by the development of antimalarial-resistant parasites and insecticide-resistant vectors. Vaccines that block transmission to mosquitoes and humans are a plausible alternative to overcome these setbacks. To inform the development of efficacious vaccines, it is imperative to understand how the parasite interacts with the host immune response. In this report, we show that the parasite can co-opt host plasmin, a mammalian fibrinolytic protein to evade host complement attack. Our results highlight a potential mechanism that may reduce efficacy of potent vaccine candidates. Taken together, our results will inform future studies in developing novel antimalarial therapeutics.


Asunto(s)
Antimaláricos , Culicidae , Malaria , Animales , Humanos , Plasmodium falciparum , Factor H de Complemento/metabolismo , Esporozoítos/metabolismo , Fibrinolisina/metabolismo , Proteínas del Sistema Complemento , Células Germinativas/metabolismo , Plasminógeno/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA